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Abstract
We analyse the open boundary partially asymmetric exclusion process with
smoothly varying internal hopping rates in the infinite-size, mean-field limit.
The mean-field equations for particle densities are written in terms of Ricatti
equations with the steady-state current J as a parameter. These equations
are solved both analytically and numerically. Upon imposing the boundary
conditions set by the injection and extraction rates, the currents J are found
self-consistently. We find a number of cases where analytic solutions can be
found exactly or approximated. Results for J from asymptotic analyses for
slowly varying hopping rates agree extremely well with those from extensive
Monte Carlo simulations, suggesting that mean-field currents asymptotically
approach the exact currents in the hydrodynamic limit, as the hopping rates
vary slowly over the lattice. If the forward hopping rate is greater than or less
than the backward hopping rate throughout the entire chain, the three standard
steady-state phases are preserved. Our analysis reveals the sensitivity of the
current to the relative phase between the forward and backward hopping rate
functions.

PACS numbers: 05.70.Ln, 05.60.−k, 02.50.Ey

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Asymmetric exclusion processes (ASEP) have been used as model nonequilibrium statistical
mechanical systems to represent many physical processes such as traffic flow [1–3], ion
transport across channels [4, 5], mRNA translation [6–8] and vesicle translocation along
microtubules [9]. For uniform hopping rates, the steady-state currents, particle densities
and correlations of the one-dimensional totally (TASEP) and partially asymmetric exclusion
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Figure 1. The N + 1-site open boundary, partially asymmetric exclusion process. The continuum
limit is taken by setting each lattice site to size ε = 1/N , thereby normalizing the total length.

process (PASEP) have been studied extensively using recursion methods, exact matrix product
techniques and mean-field approximations [10–14]. The PASEP is described in figure 1, and
is comprised of one-dimensional lattice of sites, each of which can only be empty of singly
occupied. The rules governing the dynamics of this system are as follows: a particle at site n
hops to site n + 1 with probability pn dt in the time infinitesimal dt , only if site n + 1 is empty.
Similarly, it can hop backward to site n − 1 (if site n − 1 is empty) with probability qn dt .
At the left and right boundaries (sites n = 1 and n = N , respectively) the injection probabilities
are α dt and δ dt , respectively, provided these sites are unoccupied. Extraction of particles
from sites n = 1 and n = N occur at rates γ and β, respectively. Particles do not hop
if others are blocking their target sites. We will only consider the averaged steady-state
configurations of this system.

Exact steady-state currents for the case of constant pn = p and qn = q have been found
[13, 14]. In the case where p �= q, the exact solution in the infinite lattice limit (N → ∞)

exhibits three phases described by maximal current, high particle density and low particle
density. Within each of these phases, the steady-state particle current is described by explicit
analytical expressions [14]. Additional subphases corresponding to different density profiles
arise within the high- and low-density current regimes [15, 16]. When the forward and
backward hopping rates (out of and into each site) are equal, the chain is purely diffusive and
is driven only by a difference between the injection/extraction rates at the boundaries. In this
case, only a single, smooth (with respect to the injection/extraction rates) current phase exists.

In many systems modelled by the PASEP, the internal hopping rates are spatially varying.
For example, variations in the hopping rates may arise in pores that have internal molecular
structure, microtubules tracks (on which molecular motors move) that are comprised of
periodic subunits, or from variations in mRNA or DNA sequence. Variations in the forward
hopping rate for fixed lattice defects in a TASEP have been treated approximately in the limit
of few, isolated defects [8, 17], and in the periodic case where the forward hopping rate takes
on two values [18].

In this paper, we consider spatially varying internal forward and backward particle hopping
rates in a PASEP. We find solutions for the current and density when the forward and backward
hopping rates are given by functions pn and qn that vary slowly with the lattice position n. In
the thermodynamic, mean-field limit, the equation of motion for the mean occupancy at each
site can be described in terms of a nonlinear continuum equation involving the coarse-grained
mean occupations σ(x), and the continuum hopping rate functions p(x) and q(x). In the
next section we derive the steady-state continuum equations by expanding the occupancy
evolution equations in powers of ε = 1/N , where N → ∞ is the total number of lattice
sites in the chain. We consider the four general classes of the hopping functions p(x) and
q(x). In section 3, we treat the ‘pure diffusion’ limit where pn = qn+1, or, in the continuum
limit, p(x) = q(x + ε). In this limit, q(x) � p(x) − εp′(x), the mean-field equations
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become linear, and exact simple results are recovered. In section 4, we consider the ‘shifted
diffusion’ limit, where the forward and backward hopping rates at each site are identical in
the sense that pn = qn, or, |p(x) − q(x)| � o(ε). We find exact implicit solutions for special
forms of p(x). These results are markedly different from those found for pure diffusion,
although the structure of p(x) and q(x) are nearly identical for the two cases. The case where
|p(x) − q(x)| > O(ε), and p(x) − q(x) does not change sign is considered in section 5.
Asymptotic analysis indicates that the standard three-phase structure found for constant p, q

[13, 14] is preserved qualitatively. In section 6, we show that internal density boundary layers
arise if p(x) − q(x) crosses zero for 0 < x < 1. This case eluded analytic treatment so only
numerical and simulation results were obtained. In all cases, we compare our results with
numerics and continuous time Monte Carlo simulations. In the summary and conclusions, we
discuss the limits in which one would expect mean-field approaches to yield exact steady-state
currents.

2. Continuum mean-field limits

Consider a one-dimensional lattice (figure 1) containing N + 1 sites each of length ε. For the
interior sites, the continuum limit of this lattice will be defined by a sampling of all relevant
quantities (e.g., density) at the centres of each lattice site. Density profiles in the presence of
sources and sinks exhibit rich shock behaviour as studied by Parmeggiani et al [19], and by
Evans et al [20]. Here, we will neglect adsorption/desorption at the interior sites; however,
we allow the internal hopping rates to vary slowly along the chain.

The equation for the discrete occupation variable σ̂n ∈ (0, 1) in the chain interior is

dσ̂n

dt
= (

Ĵ +
n−1 − Ĵ +

n

)
+

(
Ĵ−

n+1 − Ĵ−
n

)
, 1 � n � N − 1, (1)

where

Ĵ +
n = pnσ̂n(1 − σ̂n+1) and Ĵ−

n = qnσ̂n(1 − σ̂n−1) (2)

are the currents from site n to site n + 1 and from site n to site n − 1, respectively.
The mean-field assumption implies that the ensemble averaged occupancies are

uncorrelated, 〈σ̂nσ̂m〉 ≈ σnσm, where σn ≡ 〈σ̂n〉. Upon taking an ensemble average of
equation (1), and applying the mean-field approximation, the evolution equation for the mean
occupancy in the chain interior (1 � n � N − 1) becomes

dσn

dt
= (

J +
n−1 − J +

n

)
+ (J−

n+1 − J−
n )

≈ ε
∂

∂x
(J− − J +) +

ε2

2

∂2

∂x2
(J + + J−), (3)

where J +
n ≡ 〈Ĵ +

n〉 = pnσn(1 − σn+1) and J−
n ≡ 〈

Ĵ−
n

〉 = qnσn(1 − σn−1). Upon extrapolating
the continuous function according to σ(x = nε) = σn, and Taylor expanding equation (3) in
powers of ε, we find the continuum mean-field equation:

dσ(x)

dt
= ε[(q − p)σ(1 − σ)]′ +

ε2

2
[[(p + q)σ ]′(1 − σ) + (p + q)σσ ′]′. (4)

Assuming the steady-state limit, and integrating the conservation equation (4), we obtain1

(p − q)σ (1 − σ) − ε

2
([(p + q)σ ]′(1 − σ) + (p + q)σσ ′) = J, (5)

1 The continuum definition of continuity, σ̇ (x) + ∂xJ = 0., yields the integration constant J .
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where the integration constant J is the steady-state current. Equation (5) can be rewritten in
the Riccati form

εσ ′(x) = −JP (x) + Q(x)σ(x)(1 − σ(x)), (6)

where

P(x) = 2

(p + q)
and Q(x) =

[
2(p − q)

(p + q)
− ε

(p + q)′

(p + q)

]
. (7)

The boundary densities are found by measuring the steady-state current into and out of the
first and last sites: J = α(1 − σ0) − γ σ0 and J = βσN − δ(1 − σN), from which we find

σ0 = α − J

α + γ
and σN = δ + J

β + δ
. (8)

Equations (6) and (8) form the basis of our steady-state analysis. Integrating equation (6)
from x = 0 to x = 1, and imposing the boundary conditions (equations (8)), implicitly
determines J . Once the steady-state current J is fixed, the mean-field density profiles are
determined. For certain p(x), q(x), one may be able to solve equation (6) analytically, and
use this result along with the boundary conditions 8 to find J in closed form.

3. Pure diffusion: p(x) = q(x + ε), 0 < x < 1

Consider the special case pn = qn+1, 1 � n � N − 1 where the hopping rates between two
sites are equal. In this case, there is no driving force on the particles and a net current arises
only from differences in injection and extraction rates at the two ends. The quadratic terms in
equation (1) cancel, the equation for σn becomes linear, and the mean-field approximation is
exact. In the continuum approximation p(x) = q(x + ε),

P(x) = 1

p(x)

[
1 +

ε

2

p′

p
+

ε2

4

(
p′2

p2
− p′′

p

)2

+ O(ε3)

]
and Q(x) = O(ε3), (9)

and to the lowest order in ε,

σ ′(x) � − J

εp(x)
. (10)

Integration of equation (10) yields

σ(1) − σ(0) ≈ −J

ε

∫ 1

0

1

p(x ′)
dx ′ ≡ −J

ε
〈1/p〉. (11)

Upon applying equations (8), (with q1 = p0 and qN = pN−1), and solving for J ,

J = (αβ − γ δ)

〈1/p〉(α + γ )(β + δ) + (α + β + γ + δ)
. (12)

This same ‘homogenization’ result, with the Riemann equivalent

〈1/p〉 ≡
N−1∑
n=0

p−1
n , (13)

is also easily obtained by recursively solving the exact discrete equation pn−1(σn − σn−1) =
−J, (1 � n � N). The corresponding density profile is obtained through

σn = σ0 + J

n−1∑
j=0

p−1
j . (14)
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For constant pn = qn = p, equation (12) reduces to a trivial result for the steady-state current
of an N + 1 site boundary-driven chain [4, 14]

J = p(αβ − γ δ)

N(α + γ )(β + δ) + p(α + β + γ + δ)
. (15)

4. Shifted diffusion: p(x) � q(x), 0 < x < 1

If pn � qn, such that |p(x) − q(x)| � o(ε), particles at each site hop equally to the right or
the left, with possibly different rates from site to site. This case corresponds to particles that
cannot distinguish forward from backward motion but, as detailed balance is violated, is not
equivalent to pure diffusion. We will see that this slight change in the hopping rate structure
from the pn = qn+1 case results in a very different steady-state current.

To the lowest order, when p(x) � q(x),

P(x) � 1

p(x)
and Q(x) � −ε

p′(x)

p(x)
. (16)

Since Q(x) is of order P(x), the σ(1 − σ) term in equation (6) cannot be neglected and,
unlike the purely diffusive case, the problem is nonlinear. Therefore, we would not expect the
mean-field particle densities or currents to be necessarily exact.

In this case, there are various variable transforms that render the Riccati equation
analytically tractable. The simplest case is where the Riccati equation is separable. This
occurs when (p + q)′ = constant, which implies p(x) = q(x) = ax + b. Equation (6) can
then be integrated from x = 0 and σ = σ(0) = σ0 to give∫ x

0

dx ′

ax ′ + b
= 1

a

∫ σ(x)

σ0

dσ

(σ − σ+)(σ − σ−)
, (17)

where σ± = 1/2 ± 1/2
√

1 + 4J/(εa). Integrating (17), we find the density profile σ(x) from(
ax + b

b

)σ+−σ−
=

(
σ(x) − σ+

σ(x) − σ−

)(
σ0 − σ−
σ0 − σ+

)
. (18)

An implicit formula for J (to order ε) is found by imposing the boundary condition at x = 1
(σ (1) = σN ≈ δ/(β + δ)):(

a + b

b

)√
1+4J/(εa)

=
(

δ − (β + δ)σ+

δ − (β + δ)σ−

)(
α − (α + γ )σ−
α − (α + γ )σ+

)
. (19)

The solution to equation (19) is found numerically and plotted in figure 2 for representative
parameters.

Next, consider another analytic solution found by using the definition

σ(x) = ε

Q(x)

y ′(x)

y(x)
(20)

which transforms equation (6) to

Q(x)y ′′(x) − [Q′(x) + ε−1Q2(x)]y ′(x) + ε−2JP (x)Q2(x)y(x) = 0. (21)

Provided

Q′(x) + ε−1Q2(x) = 0, (22)

and Q(x) �= 0, we find

y ′′(x) + ε−2JP (x)Q(x)y = 0. (23)
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Figure 2. Densities and currents from analytic solutions of the Riccati equation and from
simulations. (a) The density profile resulting from the linear hopping rate function p(x) =
q(x) = x + 1. Results from the analytic solution equation (18) (solid curve) and from Monte
Carlo simulations (circles) are shown. Also shown is the exact density for the purely diffusive case
p(x) = q(x + ε) = x + 1 (dashed curve). (b) Currents derived from both the analytic solution
equation (19) (solid curve) and Monte Carlo simulations (circles). Also shown for contrast is
the exact current in the purely diffusive case (dashed curve). (c) The density profiles associated
with the hopping rate function p(x) = q(x) = 1/(x + 1). The solid, circled and dashed curves
correspond to analytic, Monte Carlo and exact diffusion (for p(x) = q(x+ε) = 1/(x+1)) solutions.
(d) Currents derived from both simulation and the analytic solution to equation (32). The arrows
in (b) and (d) mark the value α = 1.5 used in plotting the density profiles shown in (a) and (c).

The condition equation (22) is solved by

Q(x) = ε

x + b
≡ 2(p − q)

(p + q)
− ε(p + q)′

(p + q)
, (24)

which constrains q(x) to p(x) through

q(x) = e−2x/ε

x + b

[∫ x

(x ′ + b)g(x ′) e2x ′/εdx ′ + constant

]
, (25)

where

g(x) =
(

2

ε
− 1

x + b

)
p(x) − p′(x). (26)

Given pairs of p(x), q(x) that satisfy equation (24) or (25), one can find analytic solutions
to equation (23), reconstruct σ(x) via equation (20), and impose the boundary conditions on
σ(0) and σ(1) (equations (8)) to find an implicit equation for J . Note that the constraint
equation (25) allows for analytic solutions of equation (6) for hopping rate functions more
general than p(x) = q(x). Restricting ourselves to p(x) = q(x), the only solution for
p(x) + q(x) = 2p(x) that satisfies equation (24) is

p(x) = a/(x + b). (27)

Equation (23) then becomes

y ′′(x) + k2y(x) = 0, k2 = J

εa
(28)
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admitting a solution of the form

y(x) ∝ eikx + c e−ikx . (29)

Upon setting σ(0) = Q−1(0)(y ′(0)/y(0)) = σ0 = (α − J )/(α + γ ),

c = kb + iσ0

kb − iσ0
. (30)

Substituting equation (30) into equations (29) and (20), we find

σ(x) = (x + b)k
σ0 cos kx − kb sin kx

σ0 sin kx + kb cos kx
. (31)

Finally, imposing the boundary condition at x = 1 implicitly determines J :

σ(1) = k(b + 1)
σ0 cos k − kb sin k

σ0 sin k + kb cos k
= σN = δ + J

β + δ
. (32)

Since J ∼ εa, σ0 ≈ α/(α + γ ) and σN ≈ δ/(β + δ) can be used to numerically solve
equation (32) for currents and densities. Expanding J ≈ 0 also shows that J ∝
εa(αβ(b + 1) − bγ δ).

In figures 2, we plot (a) the densities and (b) the currents for the hopping rate profile
p(x) = q(x) = ax + b as a function of driving α. The results of extensive Monte Carlo
simulations using the BKL continuous time algorithm [21], for a lattice of size N = 1000, are
also shown. Both analytic (in the ε → 0 limit) and simulation results agree with a high degree
of accuracy. In figures 2(c) and (d), we plot the densities and currents corresponding to the
inverse hopping rate profile p(x) = q(x) = a/(x + b). Here, the current also agrees well with
the Monte Carlo simulations. However, there is a small discrepancy between the densities
from mean-field theory and those from Monte Carlo simulations. This discrepancy is not
unexpected since correlations are neglected in mean-field theory. Also shown for comparison
are the densities and currents for the purely diffusive chain where p(x) = q(x + ε). These
densities (dashed curves) are very close to those corresponding to p(x) = q(x); however, the
diffusive currents are significantly different. By shifting the backward hopping rate function
by ε, the density profile changes only slightly. However, since the steady-state currents scale as
ε, small changes in boundary densities can lead to large relative differences in the steady-state
currents.

5. Completely driven chain: |p(x) − q(x)| � O(ε), 0 < x < 1

In this section, we consider significantly different forward and backward hopping rates, and
for simplicity, first assume p(x) > q(x) for 0 < x < 1. In this case, neither P(x) nor Q(x)

is small, but equation (6) can be treated using singular perturbation theory and the appropriate
implementation of density boundary layers. Suppose a boundary layer arises near x ∼ ε.
Rescaling x = εy, we find

dσ(y)

dy
= −JP (εy) + Q(εy)σ (y)(1 − σ(y)). (33)

Within the boundary layer, y ∼ O(1), P (εy) ≈ P(0) and Q(εy) ≈ Q(0). Equation (33) can
be integrated to find the left inner solution

σ in
� (y) = σ+(0)(σ0 − σ−(0)) − σ−(0)(σ0 − σ+(0)) e(σ−(0)−σ+(0))Q(0)y

σ0 − σ−(0) − (σ0 − σ+(0)) e(σ−(0)−σ+(0))Q(0)y
, (34)

where σ±(0) is also the outer solution to equation (33),

σ±(x) = 1

2
± 1

2

√
1 − 4JP (x)

Q(x)
, (35)
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evaluated as x → 0. Of the two possible outer solutions, only σ+(0) can match the inner
solution σ in

� (y → ∞). The uniform solution with a density boundary layer at x ∼ ε is thus

σ�(x) = σ in
� (x/ε) + σ+(x) − σ+(x = 0). (36)

This solution automatically satisfies the boundary condition at x = 0: σ�(0) = σ0. The current
is determined by satisfying the boundary condition at x = 1; and since σ in

� (y = 1) ∼ σ+(0),

σ�(1) � σ+(1) = 1

2
+

1

2

√
1 − 4JP (1)

Q(1)

= σN = δ + J

β + δ
. (37)

The only possible solution to equation (37) is

J = 1

2

(
β − δ − P(1)

Q(1)
(β + δ)2

)
+

1

2

√(
β − δ − P(1)

Q(1)
(β + δ)2

)2

+ 4βδ. (38)

In addition to this result, two other solutions to equation (33) exist. One with a boundary
layer at x ∼ 1, and another with boundary layers at both x ∼ ε and x ∼ 1. If a boundary layer
exists only at x ∼ 1, only σ−(x) can match the inner solution near x = 1 and the uniform
solution analogous to equation (36) is

σr(x) = σ in
r (x/ε) + σ−(x) − σ−(x = 1), (39)

where

σ in
r (x/ε) = σ+(1)(σN − σ−(1)) − σ−(1)(σN − σ+(1)) e(σ+(1)−σ−(1))Q(1)(1−x)/ε

σN − σ−(1) − (σN − σ+(1)) e(σ+(1)−σ−(1))Q(1)(1−x)/ε
. (40)

In this case, the self-consistent current is found from σr(0) = σ0:

J = 1

2

(
α − γ − P(0)

Q(0)
(α + γ )2

)
+

1

2

√(
α − γ − P(0)

Q(0)
(α + γ )2

)2

+ 4αγ . (41)

When both boundary layers exist, the outer solutions must match at at least one
intermediate interior position σ+(x

∗) = σ−(x∗), 0 � x∗ � 1. The corresponding uniform
solution is

σ∗(x) =
{

σ�(x) 0 � x � x∗

σr(x) x∗ � x � 1
(42)

with the corresponding maximal current

Jmax = Q(x∗)
4P(x∗)

. (43)

The solution equations (38), (41), and (43) are valid only in the parameter regimes where
J � Q(x∗)/4P(x∗) and 0 � σ � 1, and represent a generalization of the well-established
three-phase current structure arising in the constant p, q PASEP [13, 14]. This three-phase
structure is preserved only if p(x) − q(x) does not change sign on x ∈ [0, 1]. Note that
if p, q are constant and p − q > 0, the inner solutions are exact on x ∈ [0, 1] and we
recover the known results for the PASEP [13, 14]. The mean-field densities and currents
for p(x) = 2 + 2(x − 1/2)2 and q = 1/2 are plotted in figure 3, along with results from
continuous-time Monte Carlo simulations. The agreement is extremely good between the
asymptotic mean-field currents and simulation currents, suggesting that the basic physics of
the three-phase structure is preserved and that mean-field theory provides exact, steady-state
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Figure 3. Densities and currents from asymptotic solutions of the Riccati equation and from
simulations. Parameters used are ε = 1/1000, β = γ = 1, δ = 0.5 and p(x) = 2 + 2(x −1/2)2 >

q(x) = 1/2. In all plots, the solid black curves correspond to asymptotic solutions of the mean-
field equations, while the blue circles correspond to results provided by Monte Carlo simulations.
(a) Asymptotic and simulation densities for α = 0.5. The parameters used render the system in
a low density, entry rate-limited regime. (b) For α = 1.5, the system is in the maximal current
phase (Jmax = 3/8), where boundary layers arise at both x ≈ 0 and x ≈ 1, and x∗ = 1/2.
(c). The steady-state current as a function of α. Given the other parameters used, the system
transitions from a low density to a maximal current phase at α = 5/6. The parameters α = 0.5, 1.5
used in plotting the densities in (a) and (b) are marked with arrows.

currents. The densities are also in good agreement, except in barely discernible region within
the boundary layers where mean field and simulation derived densities differ. Note that there
is also a slight discrepancy between mean field and simulation currents in the maximal current
regime (figure 3(c)). The underestimation of the current by the mean-field analysis results
from the finite size of the rate-limiting region. Although ε is small, and p(x) is reasonably
slowly varying, the rate limiting region at x ≈ 1/2 is small enough for actual current (from
MC simulations) to be noticeably greater than the asymptotic mean-field result.

6. Opposing drifts: |p(x) − q(x)| � O(ε) except at countable points x0

Finally, consider the important class of hopping rates where |p(x) − q(x)| � O(ε), except
at certain points x0 where p(x) − q(x) crosses zero, like Q(x) in the ε → 0 limit.
Examples of p(x), q(x) with these properties are p(x) = a + bx, q(x) = a + b(1 − x)

(where x0 = 1/2), and periodic p(x), q(x) such that Q(x) oscillates above and below zero.
Periodic hopping rates may arise during transport through pores with atomic periodicity. For
example, periodic arrangements of atoms or molecules within the pore would impart a periodic
potential on translocation of particles of the form p(x) ∝ exp[(V (x) − V (x + ε))/kBT ] and
q(x) ∝ exp[(V (x) − V (x − ε))/kBT ], which are periodic if V (x), the interaction potential
as a function of the coordinate x along the axis of the chain is itself periodic.

Instead of specifying a detailed, molecular model for the hopping rates, we assume
p(x), q(x) to be functions that qualitatively capture the physics arising from periodic hopping
rates. The qualitative dependence of the steady-state currents and densities should not depend
upon the exact, quantitative forms chosen for the periodic hopping rates. Therefore, for
simplicity, we assume

p(x) = a + b sin2(πkx) q(x) = a + b cos2(πkx + πφ), (44)
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Figure 4. Densities and currents from solutions of the Riccati equation and from simulations for
the periodic hopping rates modelled by equation (44). The parameters used are a = 1, b = 0.5,

α = 1.5, β = γ = 1, δ = 0.5. (a) p(x) (dashed), q(x) (dotted), and the numerically solved
density profile for k = 10, φ = 0. (b) Numerically computed density profiles for k = 11.3, φ = 0
(solid) and k = 11.7, φ = 0 (dashed). (c) Numerically solved (solid) and simulation-derived
(circles) steady-state currents as a function of k (φ = 0). The arrows indicate k = 11.3, 11.7 used
for generating the profiles in (b). Currents associated with integer values of k are denoted by filled
circles. (d) The current as a function of the phase difference φ between p(x) and q(x) for k = 12.

with k > 1 and a > b. This functional form for the hopping rates captures the periodicity
of the pore potential and allows for a phase difference φ between the forward and backward
hopping rates. When φ = 0, p(x) + q(x) = 2a + b, P (x) = 2/(2a + b), and the function
Q(x) = −2b cos(2πkx)/(2a + b) crosses zero at points x0 = (2n + 1)/(4k). Despite this
simplification, there is no analytic solution to equation (6), and we were unable to find
approximations. Asymptotic analysis of the Riccati is also difficult due to the existence of
multiple, interior boundary layers, and the fact that we must determine the boundary densities
to O(ε) in order to extract the current J . Moreover, numerical solutions to equation (6) are
difficult to obtain for extremely small ε since numerical errors build up as one integrates
equation (6) from x = 0 to x = 1. Nonetheless, we compare currents and densities derived
from numerics and continuous-time Monte Carlo simulations.

Figures 4 show numerically computed (ε = 0.001) and simulated (N = 1001) densities
and currents for periodic hopping rates equation (44). In Figure 4(a) are the functions
p(x), q(x), and the density profile for k = 10 and φ = 0. Due to the oscillatory nature of
p(x) and q(x), the densities are locally compressed and rarefied, rapidly jumping between
σ(x) = 0 and σ(x) = 1. The numerically computed densities for noninteger k are also
shown in figure 4(b). Small changes in k can cause large variations in the density near the
x = 1 boundary, causing dramatic changes in the current, as shown in figure 4(c). Figure 4(d)
shows the sensitivity of the current to variations in the phase φ. For clarity have shown only
numerically computed density profiles: in our plots, densities found from simulations are
nearly indiscernible from those found numerically. As in all other cases of slowly varying
hopping rates, mean-field theory appears to yield exact steady-state currents. The agreement
between numerical and simulated data is extremely good in figure 4(c), but the discrepancy
increases as the number of hopping rate oscillations k increases.
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7. Summary and conclusions

We have formulated the mean-field approximation of a partially asymmetric exclusion process
in the hydrodynamic limit in terms of a solution to the Riccati equation. This nonlinear
equation can be solved in special cases and asymptotically analysed in others. We compare
numerical and analytical results with results from extensive, (109 − 1010 steps) continuous
time Monte Carlo simulations and find extremely good agreement for the steady-state particle
currents. The numerical simulations fall well within the simulation error, typically �1%
and barely discernible in our plots. This agreement holds for all hopping rate profiles
considered, provided they do not vary rapidly along the lattice. Moreover, although we have not
proven that solutions to the Ricatti equations (equations (6)) yield exact currents, comparison
of the numerical solutions for the current with those obtained from extensive continuous-
time MC simulations shows a decreasing discrepancy as ε/� → 0, provided sufficient long
simulations are performed. Therefore, we conjecture that mean-field approximations provide
asymptotically exact steady-state currents as long as the hopping rate structure is smoothly
varying in the thermodynamic (N → ∞) limit.

The simulated densities, as expected, are quantitatively different from those obtained
from the numeric or analytic solution of the Ricatti equation. Moreover, we find that the
three-phase current structure of the PASEP is preserved when p(x) > q(x). For cases where
|p(x) − q(x)| � O(ε) (pure diffusion and shifted diffusion), J ∼ ε, but is sensitive to even
slight shifts between the functions p(x) and q(x). The cases p(x) = q(x) and p(x) = q(x+ε)

correspond to physically realizable systems, yet yield very different results. When p(x) and
q(x) vary periodically, as might be expected along a molecular channel constructed from a
periodic array of atoms or molecules, the currents derived from solving equation (6) also
appear to be exact, provided there are a large number of sites in each period.
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